

।

Calculation Policy

This policy lays out our concrete, pictorial and abstract approach towards calculation.

Statutory Requirements:

Pupils should be taught to:
Birth -to 11 months - notice changes in number of objects / images, sounds in groups of and upto 3
8-20 months - has some understanding that things exist even when out of sight
16-26 months - Begins to organise and categorise objects -sorting
22-36 months - knows that a group of things changes in quantity when something is added or taken away
30-50-separates a group of 3 or 4 objects in different ways beginning to recognise that the total is still the same
40-60 - finds the total number of items in two groups by counting all of them

In practical activities and discussions begins to use the vocabulary involved in addition and subtraction

Vocabulary

Add, more, and, make, sum, total, altogether, score, double, one more, two more, ten more...

Statutory Requirements

Pupils should be taught to:

- read, write and interpret mathematical statements involving addition (+) and equals (=) signs -
- represent and use number bonds and related subtraction facts within 20
- add one-digit and two-digit numbers to 20 , including zero
- solve one-step problems that involve addition, using concrete objects and pictorial representations, and missing number problems such as $9=\square+7$.

Put together, add, altogether, total, more, plus, make, sum, score, double, near double, one more, two more... ten more, how many more to make ...?

Probus Primary School Calculation Policy

Objective \& Strategy	Concrete Coat hangers, bead strings, 100 squares, case ten, numicon, counting objects.	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Use part part whole model. Use cubes to add two numbers together as a group or in a bar.		$4+3=7$ Use the part-part $10=6+4$ whole diagram as shown above to move into the abstract.
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make $10 .$ This is an essential skill for column addition later.		$3+9=$ Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10. $9+5=14$ 14	$7+4=11$ If I am at seven, how many more do I need to make 10 . How many more do I add on now? Begin to introduce \square $=9 _+7$
Represent \& use number bonds and related subtraction facts within 20	2 more than 5. Snakes and ladders game.		Emphasis should be on the language ' 1 more than 5 is equal to 6.' ' 2 more than 5 is 7. ' ' 8 is 3 more than 5.'

Statutory Requirements

Pupils should be taught to:

- solve problems with addition:
- using concrete objects and pictorial representations, including those involving numbers, quantities and measures
- applying their increasing knowledge of mental and written methods
- recall and use addition facts to 20 fluently, and derive and use related facts up to 100
- add numbers using concrete objects, pictorial representations, and mentally, including:
- a two-digit number and ones
- a two-digit number and tens
- two two-digit numbers
- adding three one-digit numbers
- show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
- recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems

Vocalbullary

Put together, add, addition, more, plus, make, sum, total, altogether, total, score, double, near double, one more, two more, ten more..., one hundred more... How many more to make...?

Objective \＆ Strategy	Concrete	Pictorial	Abstract							
Adding multiples of ten		Use representations for base ten．	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$							
Use known number facts Part part whole	Children ex－ plore ways of making num－ bers within 20	$\begin{gathered} \square \\ \square+\square=20 \quad 20-\square=\square \\ \square+\square=20 \quad 20-\square=\square \end{gathered}$	\square $+1=16$ $16-1=$ \square $1+$ \square $\square=16$ $16-$ \square $\square=1$							
Using known facts		$\begin{aligned} \because+\because & =\{ \\ \\|+\\| \\| & =\\| \\|\\| \\| \\ \square \square+\text { 昭 } & =\text { 昭品 } \end{aligned}$ Children draw representations of H, T and O	$3+4=7$ leads to $30+40=70$ leads to $300+400=700$							
Bar model	$3+4=7$	$7+3=10$	23 25 7$23+25=48$							

Objective \& Strategy	Concrete	Pictorial	Abstract
Add a two digit number and ones	$17+5=22$ Use ten frame to make 'magic ten Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$		$\begin{aligned} & 17+5=22 \\ & \text { Explore related facts } \\ & 17+5=22 \\ & 5+17=22 \\ & 22-17=5 \\ & 22-5=17 \end{aligned}$
Add a 2 digit number and tens	Explore that the ones digit does not change		$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$
Add two 2-digit numbers	$\text { APAEP } \begin{gathered} \square \\ \square \square \square \\ \square \\ \square \square \end{gathered}$ Model using dienes, place value counters and numicon	Use number line and bridge ten using part whole if necessary.	$\begin{gathered} 25+47 \\ 20+5 \quad \mid 40 * 7 \\ \frac{1}{20+5} \begin{array}{l} 30+7 \end{array} \\ \hline 50+13= \end{gathered}$
Add three 1-digit numbers	Combine to make 10 first if possible, or bridge 10 then add third digit	$8^{8}+8^{8}+8^{8}=15$	$\begin{aligned} & 20+5 \\ & 40+8 \\ & \hline 60+13=73 \end{aligned}$

Statutory Requirements

Pupils should be taught to:

- add numbers mentally, including:
- a three-digit number and ones
- a three-digit number and tens
- a three-digit number and hundreds
- add numbers with up to three digits, using formal written methods of columnar addition
- estimate the answer to a calculation and use inverse operations to check answers
- solve problems, including missing number problems, using number facts, place value, and more complex addition.

Vocalbullary

Put together, add, addition, more, plus, make, sum, total, altogether, score, double, near double, one more, two more, ten more, one hundred more, How many more to make...?

Statutory Requirements

Pupils should be taught to:
add with up to 4 digits using the formal written methods of columnar addition where appropriate estimate and use inverse operations to check answers to a calculation
solve addition two-step problems in contexts, deciding which operations and methods to use and why.

add whole numbers with more than 4 digits, including using formal written methods (columnar addition) add numbers mentally with increasingly large numbers use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy solve addition multi-step problems in contexts, deciding which operations and methods to use and why.

$\square \quad$ solve addition multi-step problems in contexts, deciding which operations and methods to use and why

Put together, add, addition, more, plus, sum, total, altogether, scored, double, near double, How many more to make...?

Subtraction

Statutory Requirements:

Pupils should be taught to:

Birth -to 11 months - notice changes in number of objects / images, sounds in groups of and upto 3
8-20 months - has some understanding that things exist even when out of sight
16-26 months - Begins to organise and categorise objects -sorting
22-36 months - knows that a group of things changes in quantity when something is added or taken away
30-50-separates a group of 3 or 4 objects in different ways beginning to recognise that the total is still the same
40-60 - Understands subtraction as taking away objects from a group and counting on how many are left.
In practical activities and discussions begins to use the vocabulary involved in addition and subtraction
Early Learning Goal Children count reliably with numbers from one to 20 , place them in order and say which number is one more or one less than a given number. Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer.

Take (away), leave, how many left/left over?,
how many are gone? One less. Two less... ten less...?
how many fewer is... than...?
Difference between is the same as...

Count back from large group as you take away -

[^0]

Statutory Requirements

Pupils should be taught to:

- read, write and interpret mathematical statements involving subtraction (-) and equals (=) signs
- represent and use number bonds and related subtraction facts within 20
- subtract one-digit and two-digit numbers to 20, including zero
- solve one-step problems that involve subtraction, using concrete objects and pictorial representations, and missing number problems such as $9=\square-7$.

How many left/left over?, How many gone? One less, ten less, how many fewer is...than...? How much less is....? Difference between, half, halve, = equals, is the same as, How many more is... than? How much more is....? Subtract, take away, minus, leave.

Statutory Requirements

Pupils should be taught to:

\square solve problems with subtraction:

- using concrete objects and pictorial representations, including those involving numbers, quantities and measures
- applying their increasing knowledge of mental and written methods
\square recall and use subtraction facts to 20 fluently, and derive and use related facts up to 100
\square subtract numbers using concrete objects, pictorial representations, and mentally, including:
- a two-digit number and ones
- a two-digit number and tens
- two two-digit numbers
\square show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
\square recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems

How many left/left over?, How many gone? One less, ten less, one hundred less, how many fewer is...than...? How much less is....? Difference between, half, halve, = equals, is the same as, How many more is... than? How much more is....? Subtract, take away, minus, leave, tens boundary.

Objective \& Strategy	Concrete	Pictorial	Abstract
Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'	$\begin{aligned} & \sum_{3}^{3} \sum_{3}^{3} \quad \\ & 20-4= \end{aligned}$	$20-4=16$
Partitioning to subtract without re- grouping. 'Friendly numbers'	$34-13=21$ Use Dienes to show how to partition the number when subtracting without regrouping.	Children draw representations of Dienes and cross off. b $43-21=22$	$43-21=22$
Make ten strategy Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.	Use a bead bar or bead strings to model counting to next ten and the rest.	 Use a number line to count on to next ten and then the rest.	$93-76=17$ Charlie to add what she does here. $\begin{gathered} 47-24=23 \\ -\frac{20+7}{20+4} \\ \hline 20+3 \end{gathered}$

Statutory Requirements

Pupils should be taught to:

- subtract numbers mentally, including:
- a three-digit number and ones
- a three-digit number and tens
- a three-digit number and hundreds
- subtract numbers with up to three digits, using formal written methods of columnar subtraction
- estimate the answer to a calculation and use inverse operations to check answers
- solve problems, including missing number problems, using number facts, place value, and more complex subtraction.

How many left/left over?, How many gone? One less, ten less, one hundred less, how many fewer is...than...? How much less is....? Difference between, half, halve, = equals, is the same as, How many more is... than? How much more is....? Subtract, take away, minus, leave, tens boundary.

Objective \& Strategy	Concrete	Pictorial	Abstract
Column subtraction without regrouping (friendly numbers)	Use base 10 or Numicon to model		$\begin{gathered} 47-24=23 \\ -\frac{40+7}{20+4} \\ 20+3 \end{gathered}$ Intermediate step may be needed to lead to clear subtraction understanding.
Column subtraction with regrouping	Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into tten ones. Use the phrase 'take and make' for exchange.	Children may draw base ten or PV counters and cross off.	Begin by partitioning into pv columns Then move to $\begin{aligned} & \text { formal method if ready. In } \\ & \text { Y4 they will go back to } \end{aligned}$ $\begin{aligned} & \text { Y4 they will go back to } \\ & \text { partitioned numbers. } \end{aligned}$ partitioned numbers.

Statutory Requirements

- Pupils should be taught to:
- subtract with up to 4 digits using the formal written methods of columnar subtraction where appropriate
- estimate and use inverse operations to check answers to a calculation
- solve subtraction two-step problems in contexts, deciding which operations and methods to use and why.

$\sqrt{2} \sqrt{5}$

Pupils should be taught to:

- subtract whole numbers with more than 4 digits, including using formal written methods (columnar subtraction)
- subtract numbers mentally with increasingly large numbers
- use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

- Pupils should be taught to:
- solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why

Vocabulary

How many left/left over?, How many gone? One less, ten less, one hundred less, decrease, how many fewer is...than...? How much less is....? Difference between, half, halve, = equals, is the same as, How many more is... than? How much more is....? Subtract, take away, minus, leave, tens boundary, inverse

Y5- units boundary, tenths boundary
Y6- amount, brackets, change, complements, currency, discount, exact, exactly, most least significant digit

Objective \& Strategy	Concrete	Pictorial	Abstract
Subtracting tens and ones Year 4 subtract with up to 4 digits. Introduce decimal subtraction through context of money	234-179 Model process of exchange using Numicon, base ten and then move to PV counters.	Children to draw pv counters and show their exchange-see Y3 Until secure with exchange, only one exchange per calculation is required. Note that even when there has been a physical exchange that the value of the number remains the same. Model written method alongside practical examples initially.	Expanded column subtraction with 3-and 4-digit numbers e.g. $726-358$ $\begin{array}{rrr} 600 & 110 & 16 \\ 200 & 20 & 8 \\ -300 & 50 & 8 \\ \hline 300 & 60 & 8 \\ \hline \end{array}$ Begin to develop compact column subtraction e.g. $726-358$ $\begin{array}{r} 61116 \\ 7 x 8 \\ -358 \\ \hline 3 \end{array} 688 .$ Use phrase 'take and make' for ex- Change
Year 5-Subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal	As Year 4-informal jottings etc and estimation.	Children to draw pv counters and show their exchange-see Y3 Continue to use counting up subtraction for subtractions involving money, including finding change $\text { e.g. } £ 50-£ 28 \cdot 76$	Compact foumn sibtraction for numbers with uptof digits $\begin{aligned} & \text { e.g. } 16324-8516 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \hline 8881511416 \\ & 7818 \end{aligned}$
Year 6-Subtract with increasingly large and more complex numbers and decimal values.	Apply learning to combine other areas: $\begin{aligned} & 632,465+(745,676-325,534)= \\ & 8,675,509-(9,645,253-2,867,675)= \\ & 12-2.736 \\ & 35.712-8.653 \end{aligned}$		Compact column subtraction for large numbers e.g. $34685-16458$ $\begin{array}{r} 214 \\ 7 \\ 846888 \\ -16458 \\ \hline 18227 \\ \hline \end{array}$

MULTIPLICATIONX

Pupils should be taught to:

Early Learning Goal Children count reliably with numbers from one to 20 , place them in order and say which number is one more or one less than a given number. Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer. They solve problems, including doubling, halving and sharing.

double, group, set, match, sort, same, different, 'clever' counting in 2 s .

Teaching Points

Doubling using objects and numbers

Pupils should be taught to:

- solve one-step problems involving multiplication, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

lots of, groups of x, times, multiply, multiplied by, once, twice, three times, four times, five times... ten times..., times as (big, long, wide and so on), repeated addition, array, row, column, double, halve, share, share equally, one each, two each, three

Pupils should be taught to:

- recall and use multiplication facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers
- calculate mathematical statements for multiplication within the multiplication tables and write them using the multiplication (x) and equals (=) signs
- show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts

Pupils recall and use $2 \times 5 \times 10 x$ and $3 x$ table

 but use doubling to progress onto $4 x$
lots of, groups of, x, times, multiply, multiplied by, multiple of, once, twice, three times, four times, five times... ten times... times as (big, long, wide and so on), repeated addition, array, row, column, double, halve, share, share equally one each, two each, three each... group in pairs, threes... tens, equal groups of \div, divide, divided by, divided into, left, left over

Objective \& Strategy	Concrete	Pictorial	Abstract
Doubling	Model doubling using dienes and PV counters.	Draw pictures and representations to show how to double numbers	Partition a number and then double each part before recombining it back together.
Counting in multiples of $2,3,4,5,10$ from 0 (repeated addition)	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models. $5+5+5+5+5+5+5+5=40$	Number lines, counting sticks and bar models should be used to show representation of counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$ $4 \times 3=\square$

Objective \& Strategy	Concrete	Pictorial	Abstract	
Multiplication is commutative	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity.		
Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.			$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$ Show all 8 related fact family sentences.	

Pupils should be taught to:

- recall and use multiplication facts for the 3,4 and 8 multiplication tables
- write and calculate mathematical statements for multiplication using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to written methods
- solve problems involving missing number problems involving multiplication including positive number scaling problems and correspondence problems where n objects are connected to m objects.

Pupils recall and use $2 \times 5 \times 10 \times 3 \times 4 \times 6 \times 8 \times$ and

 9x
lots of, groups of, x, times, multiply, multiplication, product (new this year), multiplied by, multiple of, once, twice, three times, four times, five times... ten times... times as (big, long, wide and so on), repeated addition, array, row, column, double, halve, share, share equally
one each, two each, three each... group in pairs, threes... tens, equal groups of \div, divide, divided by, divided into, left, left over

Pupils should be taught to:

- recall and use multiplication facts for multiplication tables up to 12×12
- use place value, known and derived facts to multiply mentally, including: $x 0 \times 1$ and multiplying together three numbers
- recognise and use factor pairs and commutativity in mental calculations
- multiply two-digit and three-digit numbers by a one-digit number using formal written layout
- solve problems involving multiplying, including the distributive law to multiply two-digit numbers by one-digit including positive number scaling problems and correspondence problems where n objects are connected to m objects.

Pupils recall and use tables facts up to 12×12

lots of, groups of, x, times, multiply, multiplication, product, multiplied by, multiple of, once, twice, three times, four times, five times... ten times... times as (big, long, wide and so on), repeated addition, array, row, column, double, halve, share, share equally, divisible by, factor, quotient, inverse

Pupils should be taught to:

- identify multiples and factors: all factor pairs of a number, common factors of two numbers, establish whether a number up to 100 is prime and recall prime numbers up to 19
- multiply numbers up to four digits by a one- or two-digit number using a formal written method
- multiply whole numbers and those involving decimals by 10, 100 and 1000.

Pupils recall and use tables facts up to 12×12

lots of, groups of, x, times, multiply, multiplication, product, multiplied by, multiple of, once, twice, three times, four times, five times... ten times... times as (big, long, wide and so on), repeated addition, array, row, column, double, halve, share, share equally, divisible by, factor, quotient, inverse, long division/multiplication, short division/multiplication, divisor

Pupils should be taught to:

- identify multi-digit numbers up to 4 digits by a two-digit number using formal, long multiplication
- identify common factors, common multiples and common prime numbers
- use their knowledge of the order of operations to carry out calculations involving the four operations

Pupils recall and use tables facts up to 12×12

lots of, groups of, x, times, multiply, multiplication, product, multiplied by, multiple of, once, twice, three times, four times, five times... ten times... times as (big, long, wide and so on), repeated addition, array, row, column, double, halve, share, share equally, divisible by, factor, quotient, inverse, long division/multiplication, short division/multiplication, divisor

Pupils should be taught to:

Early Learning Goal Children count reliably with numbers from one to 20 , place them in order and say which number is one more or one less than a given number. Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer. They solve problems, including doubling, halving and sharing

Share, half, double, equal, group, sort, set, match, halving is smaller, doubling is larger

Practically halving objects - both halves being exactly the same	Counting and reading size - Start with play dough and things you can cut and then progress to practical objects. numbers to 20
Eg: Pizza - cut in half to make two pieces - then add toppings, 2 tomatoes - half of 2 is 1.	Doubling using objects and numbers Making number stories is a focus for understanding Halving using objects Sharing using objects
Food as a focus for	
understanding	

Pupils should be taught to:

- solve one-step problems involving division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

lots of, groups of x, times, multiply, multiplied by, once, twice, three times, four times, five times... ten times..., times as (big, long, wide and so on), repeated addition, array, row, column, double, halve, share, share equally, one each, two each, three each...

 Strategy	Concrete	Pictorial	Abstract
Division as sharing		Children use pictures or shapes to share quantities. 8 shared between 2 is 4	12 shared between 3 is 4 12 girls play a game in groups of 4 . How many are in each group?
		Sharing: 4	Pupils begin to explore related division facts and linking these directly to inverse, commutative facts:
	10	12 shared between 3 is 4 Sharing of 'chunks' begins to be modelled physically on a number line:	$\begin{array}{ll} 6 \div 2= & =6 \div 2 \\ 6 \div=3 & 3=\underline{6} \div \\ \div 2=3 & 3=\div 2 \\ \div \nabla=3 & 3=\div \nabla \end{array}$
	I have 10 cubes, can you share them equally in 2 groups?		

Pupils should be taught to:

- recall and use multiplication and division facts for the 2,3,5 and 10 multiplication tables, including recognising odd and even numbers
- calculate mathematical statements for division within the multiplication tables and write them using the signs \div and $=$
- show that multiplication of two numbers is commutative but division is not
- solve problems involving division using materials, arrays, repeated addition, mental methods and division facts, including problems in contexts.

Multiplication and division, lots of, groups of, x, times, multiply, multiplied by, multiple of, once, twice, three times, four times, five times... ten times... times as (big, long, wide and so on), repeated addition, array, row, column, double, halve, share, share equally one each, two each, three each... group in pairs, threes... tens, equal groups of, \div, divide, divided by, divided, into, left, left over

Objective \& Strategy	Concrete	Pictorial	Abstract
Division as sharing	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. Children use bar modelling to show and support understanding.	$12 \div 3=4$ Doubling and halving Find half of numbers up to 40 , including realising that half of an odd number gives a remainder of 1 or an answer containing a $1 / 2$ $\text { e.g. } 1 / 2 \text { of } 11=51 / 2$
		12 000 000 000 000 $12 \div 4=3$	
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use number lines for grouping $12 \div 3=4$ Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?

Pupils should be taught to:

- recall and use multiplication and division facts for the 3,4 and $8 \times$ tables
- write and calculate mathematical statements for division using the multiplication tables they know, including 2-digit divided by 1-digit using mental and progressing to formal written methods
- solve problems, involving missing number problems, involving division, including positive number scaling problems and correspondence problems where n objects are connected to m objects.

Multiplication and division, lots of, groups of, x, times, multiply, multiplied by, multiple of, once, twice, three times, four times, five times... ten times... times as (big, long, wide and so on), repeated addition, array, row, column, double, halve, share, share equally one each, two each, three each... group in pairs, threes... tens, equal groups of, \div, divide, divided by, divided, into, left, left over, division, remainder

Objective \& Strategy	Concrete	Pictorial	Abstract
Division as grouping	Use cubes, counters, objects or place value counters to aid understanding. 24 divided into groups of $6=4$ $96 \div 3=32$	Continue to use bar modelling to aid solving division problems. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	How many groups of 6 in $\begin{gathered} 24 ? \\ 24 \div 6=4 \end{gathered}$
Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rl} \operatorname{Eg} 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences	Find the inverse of multiplication and division sentences by creating eight linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \\ & 28=7 \times 4 \\ & 28=4 \times 7 \\ & 4=28 \div 7 \\ & 7=28 \div 4 \end{aligned}$

Pupils should be taught to:

- recall multiplication and division facts up to 12×12
- use place value, known and derived facts to divide mentally, including dividing by 1
- solve problems involving dividing a three-digit number by one-digit and number using a formal layout

multiplication and division, lots of, groups of, x, times, multiply, multiplied by, multiple of, product, once, twice, three times, four times, five times... ten times... times as (big, long, wide and so on), repeated addition, array, row, column, double, halve, share, share equally one each, two each, three each... group in pairs, threes... tens, equal groups of, \div, divide, divided by, divided into, divisible by, left, left over, division, remainder, factor, quotient, inverse

Pupils should be taught to:

- identify multiples and factors, including finding all factor pairs of a number, common factors of two numbers, know and use the vocabulary of prime numbers and establish whether a number up to 100 is prime
- multiply and divide numbers mentally drawing on known facts
- divide numbers up to 4 digits by a one-digit number using a written method and interpret remainders appropriately for the context
- divide whole numbers and those involving decimals by 10,100 and 1000.

multiplication and division, lots of, groups of, x, times, multiply, multiplied by, multiple of, product, once, twice, three times, four times, five times... ten times... times as (big, long, wide and so on), repeated addition, array, row, column, double, halve, share, share equally one each, two each, three each... group in pairs, threes... tens, equal groups of, \div, divide, divided by, divided into, divisible by, left, left over, division, remainder, factor, quotient, inverse, long and short division

Pupils should be taught to:

- divide numbers up to 4 digits by a two-digit number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding as appropriate for the context.
- divide numbers up to 4 digits by a two-digit number using the formal written method of short division as appropriate.

multiplication and division, lots of, groups of, x, times, multiply, multiplied by, multiple of, product, once, twice, three times, four times, five times... ten times... times as (big, long, wide and so on), repeated addition, array, row, column, double, halve, share, share equally one each, two each, three each... group in pairs, threes... tens, equal groups of, \div, divide, divided by, divided into, divisible by, left, left over, division, remainder, factor, quotient, inverse, long and short division, divisor

Long Division

Step 1-a remainder in the ones

hto
041 R 1
165

4 does not go into 1 (hundred). So combine the 1 hundred with the 6 tens (160).
4 goes into 16 four times.
4 goes into 5 once, leaving a remainder of 1 .

> th h too
> $8 \longdiv { 0 4 0 0 R 7 }$

8 does not go into 3 of the thousands. So combine the 3 thousands with the 2 hundreds $(3,200)$.
8 goes into 32 four times $(3,200 \div 8=400)$
8 goes into 0 zero times (tens).
8 goes into 7 zero times, and leaves a remainder of 7 .

Long Division

Step 1 continued...

When dividing the ones, 4 goes into 7 one time. Multiply $1 \times 4=4$, write that four under the 7 , and subract. This finds us the remainder of 3 .

Check: $4 \times 61+3=247$

When dividing the ones, 4 goes into 9 two times. Multiply $2 \times 4=8$, write that eight under the 9 , and subract. This finds us the remainder of 1 .

Check: $4 \times 402+1=1,609$

Long Division

Step 2-a remainder in the tens

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{array}{r} 10 \\ 2 \longdiv { 2 8 } \end{array}$ Two goes into 5 two times, or 5 tens $\div 2=2$ whole tens - - but there is a remainder!	$\begin{gathered} 10 \\ 2 \longdiv { 5 8 } \\ \frac{-4}{1} \end{gathered}$ To find it, multiply $2 \times 2=4$, write that 4 under the five, and subtract to find the remainder of 1 ten.	$\begin{array}{r} t \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ -4 l \\ \hline 18 \end{array}$ Next, drop down the 8 of the ones next to the leftover 1 ten. You combine the remainder ten with 8 ones, and get 18.

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{array}{r} 10 \\ 29 \\ 2 \longdiv { 5 8 } \\ -\frac{4}{18} \end{array}$ Divide 2 into 18. Place 9 into the quotient.	$\begin{array}{r} 10 \\ 29 \\ 2 \longdiv { 5 8 } \\ \frac{-4}{18} \\ -18 \end{array}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract.	$\begin{array}{r} t 0 \\ 2 \longdiv { 5 8 } \\ \frac{-4}{18} \\ -\frac{18}{0} \end{array}$ The division is over since there are no more digits in the dividend. The quotient is 29 .

Long Division

Step 2-a remainder in any of the place values

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{gathered} \frac{h: t 0}{} \\ \frac{1}{27} \\ 2 \longdiv { 2 7 8 } \end{gathered}$ Two goes into 2 orie time or 2 hundreds $\% 2=1$ hundred.	$\begin{aligned} & \pi .40 \\ & 2 \longdiv { 1 } \\ & \frac{-2}{27.8} \end{aligned}$ Multiply, $1 \times 2=2$; wite that 2 under the two and subtract to find the: remainder of zero.	$\begin{gathered} \begin{array}{c} h 10 \\ 18 \\ 2 \longdiv { 2 7 8 } \\ -27 \\ 07 \end{array} \end{gathered}$ Next drop down the 7 of the tens next to the zero.
Divide.	Multiply \& subtract.	Drop down the next digit.
$\begin{gathered} \begin{array}{c} 140 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ \frac{2}{07} \\ \hline 10 \end{array} \end{gathered}$ - Divide 2 into 7 . Place 3 into the quotient.	$\begin{gathered} 110 \\ 2 \longdiv { 1 3 } \\ 2 \longdiv { 2 7 8 } \\ \frac{28}{07} \\ \frac{6}{1} \end{gathered}$ Multiply $3 * 2=6$; wite that 6 under the 7 , and subtract to find the. remainder of 1 ten.	$\begin{gathered} m+i \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{07} \\ \frac{6}{18} \end{gathered}$ Next drop dow the 8 of the ones next to the il leftover ten.
1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{gathered} h 4 . \dot{1} \\ 139 \\ 2 \longdiv { 2 7 8 } \\ =\frac{2}{07} \\ -6 \\ -18 \end{gathered}$ Divide 2 into al : Place 9 intothe quotient.	$\begin{gathered} 110 \\ 2 \sqrt{139} \\ 278 \\ \frac{-2}{07} \\ -\frac{6}{18} \\ \frac{-18}{0} \end{gathered}$ Multiply $9 \times 2=18$ write that 10 under the t8, and subtract to find the remainder of zero.	$\begin{array}{r} \text { hito } \\ \begin{array}{r} 139 \\ 2 \longdiv { 2 7 . 8 } \\ -2 \\ \hline 07 \\ -6 \\ \hline 18 \\ \frac{18}{0} \end{array} \end{array}$ There are no more digits to drop down: The quotient is 139.

[^0]: Teaching Points

 Counting and reading numbers to 20 Doubling using objects and numbers Halving using objects Sharing using objects Adding and subtracting two single digit numbers referring to a number line

